Enantioselective, Organocatalytic Reduction of Ketones using Bifunctional Thiourea-Amine Catalysts

De Run Li, Anyu He, and J. R. Falck*

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390

j.falck@utsouthwestern.edu

Received February 11, 2010

ABSTRACT

Prochiral ketones are reduced to enantioenriched, secondary alcohols using catecholborane and a family of air-stable, bifunctional thiourea-amine organocatalysts. Asymmetric induction is proposed to arise from the in situ complexation between the borane and chiral thiourea-amine organocatalyst resulting in a stereochemically biased boronate-amine complex. The hydride in the complex is endowed with enhanced nucleophilicity while the thiourea concomitantly embraces and activates the carbonyl.

The enantioselective reduction of prochiral ketones is a mainstay in the production of enantioenriched, secondary alcohols.¹ As in other areas of chiral synthetic methodology, the trend has been away from stoichiometric reductants² toward more economic and environmentally friendly catalytic processes³ and, in recent years, has embraced organocatalysis.^{4,5} One of the most prominent and frequently applied members of this latter category is the Corey–Bakshi–Shibata (CBS) catalyst, a chiral oxazaborolidine pioneered by Itsuno⁶

10.1021/ol100365c © 2010 American Chemical Society Published on Web 03/24/2010

and further developed by Corey⁷ and other investigators.⁸ However, the sensitivity of oxazaborolidines to oxygen and moisture as well as the need in conjunction with a current project for a highly enantioselective reducing agent compatible with a challenging combination of highly sensitive functionality, prompted us to explore the utility of urea-/ thiourea-based organocatalysts as an alternative to CBS oxazaborolidines.^{9,10}

ORGANIC LETTERS

2010 Vol. 12, No. 8

1756-1759

While chiral ureas and thioureas have emerged as efficacious catalysts for a variety of nucleophilic conjugate additions¹¹ and 1,2-carbonyl additions, for example, hydrocyanation,¹² Henry reaction,¹³ and Baylis–Hillman reaction,¹⁴ there are few examples of highly enantiose-lective hydride additions.^{15,16} However, the insights gained developing asymmetric oxy-Michael additions of boronic

⁽¹⁾ Review: (a) Itsuno, S. Org. React. **1998**, *52*, 395–576. (b) Noyori, R.; Takeshi, O.; Sandoval, C. A.; Muniz, K. Asymmetric Synth. **2007**, 321–325.

⁽²⁾ Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. *Principles and Applications of Asymmetric Synthesis*; Wiley-Interscience: New York, 2001; pp 355–367.

^{(3) (}a) Berkessel, A.; Gröger, H. *Asymmetric Organocatalysis*; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; pp 314–322. (b) Cho, B. T. *Chem. Soc. Rev.* **2009**, *38*, 443–452.

⁽⁴⁾ Review: Kagan, H. B. In *Enantioselective Organocatalysis*; Dalko, P. I., Ed.; Wiley-VCH: Weinheim, Germany, 2007; pp 391-401.

⁽⁵⁾ Alternative methodology for enantioselective ketone reductions: (a) Wu, X.; Xiao, J. J. Chem. Soc., Chem. Commun. 2007, 2449–2466. (b) Nakamura, K.; Matsuda, T. Curr. Org. Chem. 2006, 10, 1217–1246. (c) Zhou, L.; Wang, Z.; Wei, S.; Sun, J. Chem. Commun 2007, 2977–2979. (6) Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S. J. Chem. Soc., Chem. Commun. 1983, 8, 469–470.

⁽⁷⁾ Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988, 53, 2861–2863.

⁽⁸⁾ Review Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986–2012.

⁽⁹⁾ Li, Derun; Falck, John R., U.S. Pat. Appl. 2009253919, 2009; CAN 151:425227, AN 2009:1231134.

⁽¹⁰⁾ Recent example using borane-amine complex Zhou, Y.; Wang, Y.-W.; Dou, W.; Zhang, D.; Liu, W.-S. *Chirality* **2009**, *21*, 657–662.

⁽¹¹⁾ Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743.

Figure 1. Proposed asymmetric catalysis.

acids with α , β -unsaturated ketones¹⁷ revealed several unique attributes that we felt could be harnessed for enantioselective carbonyl reductions. Specifically, we envisioned that the union between a borane and a chiral thiourea–amine organocatalyst would result in a stereochemically biased boronate–amine complex.¹⁸ The hydride in the complex is endowed with enhanced nucleophilicity (the push) while the thiourea concomitantly embraces and activates the carbonyl (the pull) (Figure 1). As proof-of-concept, we developed a family of robust, bifunctional thiourea–amine catalysts and describe herein their exploitation for the stereodefined reduction of prochiral ketones to enantioenriched, secondary alcohols.

Despite its outstanding performance catalyzing the aforementioned oxy-Michael additions,¹⁷ thiourea catalyst A^{19} furnished (*S*)-(-)-1-phenylethanol (**2**) in poor yield and low enantioselectivity at room temperature in THF (Table 1, entry 1) using acetophenone (**1**) and BH₃·THF as the model substrate and hydride source, respectively. Reasoning that the cinchona alkaloid moiety might be responsible, it was replaced with the simpler (R,R)-trans-N,N'-dimethylcyclohexane-1,2-diamine. The resultant monobasic catalyst B provided a modest improvement in yield and enantioselectivity, albeit delivering the R-enantiomer of 2 (entry 2). A survey of commercial boranes showed catecholborane delivered the best performance and that toluene was superior to other common solvents. In concert with the temperature dependency displayed by CBS catalysts,²⁰ both yield and optical purity improved using this combination as the temperature was lowered to around -46 °C (entry 3), but then declined as the temperature was lowered still further (entry 4). Primary amine catalyst C (entry 5) was disappointing in all respects and was not further pursued. In contrast, the corresponding N-benzyl secondary amine catalyst **D** at -78 °C boosted the stereoselectivity upward to 73% ee, albeit at the expense of yield (entry 6). Mindful of the preceding temperature dependency, catalyst **D** was evaluated over a wider temperature range (see Supporting Information). At -46 °C, the yield of 2 jumped to 88% and the enantioselectivity to 98% ee (entry 7); thereafter, the stereoselectivity slowly declined as the temperature was raised, for example, 85% ee at -30 °C (entry 8). The biphasic behavior of the thiourea catalysts might be attributed to the slow breakdown of the catalyst-product complex below approximately -46 °C; presumably, the catalyst-product complex is functionally catalytic, but less enantioselective than the catalyst alone.²⁰ Catalyst **E**, which differs from **D** by having an N-isobutyl substituent instead of an N-benzyl, showed a significant loss of enantioselectivity under otherwise identical reaction conditions (entry 9 vs 7). This might be attributed to

Table 1. Influence of Select Reaction Parameters on Yield and Enantioselectivity^a

$$\begin{array}{c} 0\\ \hline \\ 1\\ \end{array} \begin{array}{c} \text{cat. (10\%)}\\ HBX_2 \end{array} \begin{array}{c} HO \\ \hline \\ 2\\ \end{array}$$

entry	catalyst	borane (equiv)	solvent	temp (°C)	yield ^{b} (%)	ee ^c (%)	config
1	А	BH ₃ ·THF (0.7)	THF	23	10	5	S
2	В	BH ₃ •THF (0.7)	THF	23	40	13	R
3	В	catecholborane (1.6)	toluene	-46	88	43	R
4	В	catecholborane (1.6)	toluene	-78	65	27	R
5	С	catecholborane (1.6)	toluene	-78	25	20	S
6	D	catecholborane (1.6)	toluene	-78	24	73	S
7	D	catecholborane (1.6)	toluene	-46	88	98	\mathbf{S}
8	D	catecholborane (1.6)	toluene	-30	88	85	S
9	\mathbf{E}	catecholborane (1.6)	toluene	-46	85	65	S
10	\mathbf{F}	catecholborane (1.6)	toluene	-46	83	96	\mathbf{S}

^a Reaction conditions: catalyst (10 mol %), 24 h, argon atmosphere. ^b Isolated yield. ^c Measured by chiral HPLC.

Table 2. Enantioselective Reduction of Aryl Ketones

	0	catalyst D	HOLH		
	Ar	СС О В-Н	Ar	ł	
entry	aryl ketone	alcohol	time (h)	yield ^b (%)	ee ^c (%)
1	Ç, [°] 3		24	86	99
2	5	6	24	86	99
3		HO H B Me	26	71	95
4	F ₃ C		22	92	96
5	MeO 11		36	80	97
6	F 13		20	84	99
7	а 15		22	94	99
8	Br 17		22	95	99
9			24	86	99
10			24	95	98
11			24	93	98
12	() 5 25	HO H S 26	30	66	97

^a Reaction conditions: catalyst **D** (10 mol %), catecholborane (1.6 equiv),
4 Å molecular sieves, toluene, -46 °C, argon atmosphere. ^b Isolated yield.
^c Measured by chiral HPLC.

just steric differences, although alternative explanations, for example, $\pi - \pi$ bonding between the N-benzyl of **D** and the electron-rich catechol of the borane, warrant investigation. A comparison of catalyst **F** with **D** is also instructive. The former was prepared from a commercial, chiral acyclic-diamine, yet furnished results comparable to **D** (entry 10), indicating a wide latitude in the design of future catalysts.

Catalyst **D** proved useful for the enantioselective reduction of a wide range of aryl ketones (Table 2). Simple phenyl alkyl ketones **3** and **5** were smoothly reduced with excellent stereocontrol to (*S*)-alcohols **4** (entry 1) and **6** (entry 2), respectively. Importantly, the presence of an ortho-substituent did not alter the level of enantioselectivity (entry 3, $7 \rightarrow 8$) nor did electron-withdrawing (entry 4) or electron-donating (entry 5) groups, although the latter did require a longer reaction time. Other functionality was also well tolerated including *p*-fluoro (entry 6), *p*-chloro (entry 7), and *p*-bromo (entry 8). The cyclic ketones 1-tetralone (**19**) and 4-chromanone (**21**) were likewise well behaved and furnished alcohols **20** (entry 9) and **22** (entry 10) in high yield and optical purity. Comparable results were obtained using

^{*a*} Reaction conditions: catalyst (10 mol %), catecholborane (1.6 equiv), 4 Å molecular sieves, toluene, -46 °C, 24 h. ^{*b*} Isolated yield. ^{*c*} Measured by chiral HPLC. ^{*d*} Thirty-six hours.

2-acetonaphthone (**23**, entry 11) and the heterocycle 2-acetylthiophene (**25**, entry 12).

As an extension of our survey of structurally diverse prochiral carbonyls, α , β -unsaturated ketones **27**, **29**, and **31** were transformed in good yields and stereoselectivities to alcohols **28**, **30**, and **32**, respectively, using catalyst **D** (Table 3, entries 1–3). The latter example deserves comment since it was obtained in appreciably better optical purity (97% ee) than that reported using the CBS catalyst (81% ee).²¹ Unsymmetrical dialkyl ketones, of course, were more challenging. While alcohol **34** was produced from ketone **33** in good yield using catalyst **D**, the chiral induction was quite modest (entry 4). Drawing inspiration from the recent work of Zuend and Jacobsen,²² we sought to improve catalytic performance with the introduction

(17) Li, D. R.; Murugan, A.; Falck, J. R. J. Am. Chem. Soc. 2008130, 46–48.

(18) For similar chiral Lewis Base catalyzed silane additions, see: (a) Kocovsk, P.; Malkov, A. V. In *Enantioselective Organocatalysis*; Dalko, P. I., Ed.; Wiley-VCH: Weinheim, Germany, 2007; pp 255–286. (b) Malkov, A. V.; Stewart-Liddon, A. J. P.; Ramirez-Lopez, P.; Bendova, L.; Haigh, D.; Kocovsk, P. *Angew. Chem., Int. Ed.* **2006**, *45*, 1432–1435. (c) Denmark, S. E.; Fu, J. *J. Am. Chem. Soc.* **2000**, *122*, 12021–12022.

⁽¹²⁾ Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901–4902.

⁽¹³⁾ Shibasaki, M.; Groger, H.; Kanai, M. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, Germany, 2003; Supp. 1, Chapter 29.3.

⁽¹⁴⁾ Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614–4628.

⁽¹⁵⁾ Procuranti, B.; Connon, S. J. J. Chem. Soc., Chem. Commun. 2007, 1421–1423.

⁽¹⁶⁾ Thioureas with metals: (a) Touchard, F.; Fache, M. L. *Tetrahedron: Asymmetry* **1997**, *8*, 3319–3326. (b) Bernard, M.; Delbecq, F.; Fache, F.; Sautet, P.; Lemaire, M. *Eur. J. Org. Chem.* **2001**, 1589–1596.

of an additional chiral center. Indeed, after extensive study of the structure-activity relationships of the catalyst scaffold (see Supporting Information for details), catalysts **G** and **H** were found to raise the stereoselectivity for the reduction of **33** to 63% ee (entry 5) and 79% ee (entry 6), respectively, validating this approach. Yet, catalyst **I** was less successful despite having a fourth chiral center. In the case of cycloalkyl alkyl ketone **35**, catalysts **D** and **H** were comparable and furnished **36** with high enantioselectivity (entries 8 and 9). In summary, we describe a family of air-stable, bifunctional amino-thiourea cataysts for the enantioselective reduction of prochiral ketones using echolborane. Yields and % ee using aryl and α , β -unsaturated ketones rival or exceed those achievable using extant reagents. Promising results were also seen using unsymmetrical dialkyl ketones and a strategy for future catalyst optimization was demonstrated.

Acknowledgment. Financial support provided by the Robert A. Welch Foundation and NIH (GM31278, DK38226).

Supporting Information Available: Synthetic procedures and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100365C

⁽¹⁹⁾ Vakulya, B.; Varga, S.; Csa'mpai, A.; Soos, T. Org. Lett. 2005, 7, 1967–1969.

⁽²⁰⁾ Stone, G. B. Tetrahedron: Asymmetry **1994**, 5, 465–472.

 ⁽²¹⁾ Corey, E. J.; Bakshi, R. K. *Tetrahedron Lett.* **1990**, *31*, 611–614.
(22) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. **2007**, *129*, 15872–15883.